5-simplex |
Runcinated 5-simplex |
Runcitruncated 5-simplex |
Birectified 5-simplex |
Runcicantellated 5-simplex |
Runcicantitruncated 5-simplex |
Orthogonal projections in A5 Coxeter plane |
---|
In six-dimensional geometry, a runcinated 5-simplex is a convex uniform 5-polytope with 3rd order truncations (Runcination) of the regular 5-simplex.
There are 4 unique runcinations of the 5-simplex with permutations of truncations, and cantellations.
Contents |
Runcinated 5-simplex | ||
Type | Uniform 5-polytope | |
Schläfli symbol | t0,3{3,3,3,3} | |
Coxeter-Dynkin diagram | ||
4-faces | 47 | 6 t03{3,3} 20 {3}x{3} 15 {}xt1{3,3} 6 t1{3,3} |
Cells | 255 | 45 {3,3} 180 {}x{3} 30 t1{3,3} |
Faces | 420 | 240 {3} 180 {4} |
Edges | 270 | |
Vertices | 60 | |
Vertex figure | ||
Coxeter group | A5 [3,3,3,3], order 720 | |
Properties | convex |
The vertices of the runcinated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,0,1,1,1,2) or of (0,1,1,1,2,2), seen as facets of a runciated 5-orthoplex, or a biruncinated 5-cube respectively.
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | ||
Dihedral symmetry | [6] | [5] |
Ak Coxeter plane |
A3 | A2 |
Graph | ||
Dihedral symmetry | [4] | [3] |
Runcitruncated 5-simplex | ||
Type | Uniform 5-polytope | |
Schläfli symbol | t0,1,3{3,3,3,3} | |
Coxeter-Dynkin diagram | ||
4-faces | 47 | 6 t0,1,3{3,3,3} 20 {3}x{6} 15 {}xt1{3,3} 6 t0,2{3,3,3} |
Cells | 255 | |
Faces | 570 | |
Edges | 540 | |
Vertices | 180 | |
Vertex figure | ||
Coxeter group | A5 [3,3,3,3], order 720 | |
Properties | convex, isogonal |
The coordinates can be made in 6-space, as 180 permutations of:
This construction exists as one of 64 orthant facets of the runcitruncated 6-orthoplex.
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | ||
Dihedral symmetry | [6] | [5] |
Ak Coxeter plane |
A3 | A2 |
Graph | ||
Dihedral symmetry | [4] | [3] |
Runcicantellated 5-simplex | ||
Type | Uniform 5-polytope | |
Schläfli symbol | t0,2,3{3,3,3,3} | |
Coxeter-Dynkin diagram | ||
4-faces | 47 | |
Cells | 255 | |
Faces | 570 | |
Edges | 540 | |
Vertices | 180 | |
Vertex figure | ||
Coxeter group | A5 [3,3,3,3], order 720 | |
Properties | convex, isogonal |
The coordinates can be made in 6-space, as 180 permutations of:
This construction exists as one of 64 orthant facets of the runcicantellated 6-orthoplex.
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | ||
Dihedral symmetry | [6] | [5] |
Ak Coxeter plane |
A3 | A2 |
Graph | ||
Dihedral symmetry | [4] | [3] |
Runcicantitruncated 5-simplex | ||
Type | Uniform 5-polytope | |
Schläfli symbol | t0,1,2,3{3,3,3,3} | |
Coxeter-Dynkin diagram | ||
4-faces | 47 | 6 t0,1,2,3{3,3,3} 20 {3}x{6} 15 [{}xt0,1{3,3} 6 t0,1,2{3,3,3} |
Cells | 315 | 45 t0,1,2{3,3} 120 {}x{3} 120 {}x{6} 30 t{3,3} |
Faces | 810 | 120 {3} 450 {4} 240 {6} |
Edges | 900 | |
Vertices | 360 | |
Vertex figure | ||
Coxeter group | A5 [3,3,3,3], order 720 | |
Properties | convex, isogonal |
The coordinates can be made in 6-space, as 360 permutations of:
This construction exists as one of 64 orthant facets of the runcicantitruncated 6-orthoplex.
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | ||
Dihedral symmetry | [6] | [5] |
Ak Coxeter plane |
A3 | A2 |
Graph | ||
Dihedral symmetry | [4] | [3] |
These polytopes are in a set of 19 uniform polytera based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)
t0 |
t1 |
t2 |
t0,1 |
t0,2 |
t1,2 |
t0,3 |
t1,3 |
t0,4 |
t0,1,2 |
t0,1,3 |
t0,2,3 |
t1,2,3 |
t0,1,4 |
t0,2,4 |
t0,1,2,3 |
t0,1,2,4 |
t0,1,3,4 |
t0,1,2,3,4 |